The website uses cookies. By using this site, you agree to our use of cookies as described in the Privacy Policy.
I Agree

VOT2018 主赛冠军(MFT)算法分享

有幸在本届的VOT 2018 主赛中,我们的参赛方案Multi-solution Fusion for Visual Tracking(MFT)获得第一名的成绩,通过结果来看,MFT无论在公开序列还在隐藏序列鲁棒性都稳居第一,也验证了我们本次在算法鲁棒性所做出的努力,另外我们的RCO也获得了第三名的结果。

隐藏数据结果图

复现代码已经开源在https://github.com/ShuaiBai623/MFT

Visual-Object-Tracking Challenge (VOT) 是国际目标跟踪领域最权威的测评平台,由伯明翰大学、卢布尔雅那大学、布拉格捷克技术大学、奥地利科技学院联合创办,旨在评测在复杂场景下单目标跟踪的算法性能。本次新增了长时跟踪的挑战,而对于短时挑战,公开的60个序列不变,官方会对公开序列的前10名在隐藏数据集上测试,从而选出最终的winner。本次比赛更是达到了举办以来参与规模最大,范围最广的一届,来自于17个国家的72支参赛队伍参与了本次测评,其中不乏微软亚洲研究院、牛津大学等知名校企。

下面我对我们本次的工作做一个总结

Motivation:单目标跟踪算法发展到现在,对于简单情况已经有着非常不错的精度和鲁棒性,但是当遭遇一些特别困难的情况仍会时常失败.我们本次的工作主要在我们去年的算法CFWCR基础上进一步地发展,关注如何进一步地克服这些困难情况。

俗话说三个臭皮匠顶个诸葛亮,我们总体的思路是引入多个不同的独立判决,然后通过有效的融合得到一个更鲁棒的结果。这样做有三个好处,一方面分解成多个部分,各个部分的参数量减少,克服了相关滤波算法本身快速更新所导致的过拟合,另一方面每个部分学习到的关键信息不同,汇总各个结果总体增加了算法的可靠性,最后,我们还是使用之前相同数量的滤波器数量,相比较联合求解并不会增加数量。

具体内容如下:

(1)我们观察到CNN特征不同层次的特征和跟踪中遇到的不同问题有着一定的相关性,比如,浅层能解决尺度问题,深层解决光照,形变问题。针对不同特性,我们选择了不同的特征

(2)对于针对不同问题的特征,我们采用独立求解的方式,并且会根据视频的不同难度去自适应调整我们的融合权重,克服了过拟合,提高了鲁棒性

(3)更进一步地。我们利用合理的运动估计模型以克服甚至是完全遮挡的情况

附winner奖状~



Measure
Measure
Summary | 4 Annotations
困难的情况仍会时常失败.我们
2021/01/05 12:11
引入多个不同的独立判决,然后通过有效的融合得到一个更鲁棒的结果
2021/01/05 12:11
各个部分的参数量减少,克服了相关滤波算法本身快速更新所导致的过拟合,另一方面每个部分学习到的关键信息不同,汇总各个结果总体增加了算法的可靠性
2021/01/05 12:11
理的运动估计模型以克服甚至是完全遮挡的情况
2021/01/05 12:11