The website uses cookies. By using this site, you agree to our use of cookies as described in the Privacy Policy.
I Agree

%3Chead%3E%3Cmeta%20http-equiv=%22Content-Type%22%20content=%22text/html%3Bcharset=utf-8%22%3E%3Clink%20id=%22baseCSS%22%20href=%22https://markups.kdanmobile.com/mymarkup/front/the_components/reformat/base__newsprint.css%22%20rel=%22stylesheet%22%20class=%22newsprint%22%20type=%22text/css%22%3E%3Cstyle%20type=%22text/css%22%20id=%22optionsCSS%22%3E%23body%20%7B%20font-family:%20%22PT%20Serif%22%3B%20font-size:%2016px%3B%20line-height:%201.5em%3B%20color:%20%231F0909%3B%20text-align:%20left%3B%20%7D%20%23text%20%7B%20padding-top:%204.5em%3Bpadding-bottom:%209em%3B%7D%20%23background%20%7B%20background-color:%20%23FFFFFF%3B%20%7D%20.setTextColorAsBackgroundColor%20%7B%20background-color:%20%231F0909%3B%20%7D%20.setBackgroundColorAsTextColor%20%7B%20color:%20%23FFFFFF%3B%20%7D%20.setBackgroundColor%20%7B%20background-color:%20%23FFFFFF%3B%20%7D%20.setTextColor%20%7B%20color:%20%231F0909%3B%20%7D%20%23box,%20.setBoxWidth%20%7B%20width:%2036em%3B%20%7D%20a%20%7B%20color:%20%23065588%3B%20%7D%20a:visited%20%7B%20color:%20%231F0909%3B%20%7D%20@media%20print%20%7B%20body.footnote_links__on_print%20a,%20body.footnote_links__on_print%20a:hover%20%7B%20color:%20%231F0909%20!important%3B%20text-decoration:%20none%20!important%3B%20%7D%20%7D%20body.footnote_links__always%20a,%20body.footnote_links__always%20a:hover%20%7B%20color:%20%231F0909%20!important%3B%20text-decoration:%20none%20!important%3B%20%7D%20img%20%7B%20border-color:%20%231F0909%3B%20%7D%20a%20img%20%7B%20border-color:%20%23065588%3B%20%7D%20a:visited%20img%20%7B%20border-color:%20%231F0909%3B%20%7D%20h1%20a,%20h2%20a,%20a%20h1,%20a%20h2%20%7B%20color:%20%231F0909%3B%20%7D%20h1,%20h2,%20h3,%20h4,%20h5,%20h6%20%7B%20font-family:%20%22PT%20Serif%22%3B%20%7D%20pre%20%7B%20background-color:%20%23FFFFFF%3B%20%7D%20pre,%20code%20%7B%20font-family:%20Inconsolata%3B%20%7D%20hr%20%7B%20border-color:%20%231F0909%3B%20%7D%20html.rtl%20%23body%20%23text%20%7B%20text-align:%20right%20!important%3B%20%7D%20h1,%20h2,%20h3,%20h4,%20h5,%20h6%20%7B%20text-align:%20left%3B%20%7D%20html.rtl%20h1,%20html.rtl%20h2,%20html.rtl%20h3,%20html.rtl%20h4,%20html.rtl%20h5,%20html.rtl%20h6%20%7B%20text-align:%20right%20!important%3B%20%7D%20%23text%20div.separatorLine,%20%23text%20section::before%20%7B%20background:%20%20%20%20%20%20-o-linear-gradient(0,%20%23FFFFFF%201%25,%20%231F0909%2050%25,%20%23FFFFFF%2099%25)%3B%20background:%20%20%20%20-moz-linear-gradient(0,%20%23FFFFFF%201%25,%20%231F0909%2050%25,%20%23FFFFFF%2099%25)%3B%20background:%20-webkit-linear-gradient(0,%20%23FFFFFF%201%25,%20%231F0909%2050%25,%20%23FFFFFF%2099%25)%3B%20%7D%20%3C/style%3E%3Clink%20href=%22https://fonts.googleapis.com/css?family=PT%2BSerif:regular,bold,italic%22%20rel=%22stylesheet%22%20type=%22text/css%22%3E%3Clink%20href=%22https://fonts.googleapis.com/css?family=Inconsolata:regular,bold,italic%22%20rel=%22stylesheet%22%20type=%22text/css%22%3E%3Clink%20id=%22customFileCSS%22%20href=%22https://markups.kdanmobile.com/mymarkup/front/the_components/reformat/custom__newsprint.css%22%20rel=%22stylesheet%22%20type=%22text/css%22%3E%3C/head%3E%3Cbody%20id=%22body%22%20class=%22clearlyReady%20footnote_links__on_print%20large_graphics__do_nothing%22%3E%3Cdiv%20id=%22curtains%22%3E%3C/div%3E%3Cdiv%20id=%22bodyContent%22%3E%3Cdiv%20id=%22box%22%3E%3Cdiv%20id=%22box_inner%22%3E%3Cdiv%20id=%22text%22%3E%3Cdiv%20id=%22pages%22%3E%3Cdiv%20class=%22page%22%20id=%22page1%22%3E%3Cdiv%20class=%22page_content%22%3E%3Cdiv%20id=%22articleHeader%22%3E%3Ch1%20id=%22articleHeader__title%22%3EBig%20data%20dreams%20for%20tiny%20technologies%3C/h1%3E%3Cdiv%20id=%22articleHeader__separator%22%20class=%22separator%22%3E%3Cdiv%20class=%22separatorLine%20setTextColorAsBackgroundColor%22%3E%3C/div%3E%3C/div%3E%3C/div%3E%0A%20%20%20%20%0A%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%3Cspan%3EMIT%20research%20combines%20machine%20learning%20with%20nanoparticle%20design%20for%20personalized%20drug%20delivery.%3C/span%3E%20%0A%20%20%3C/div%3E%0A%0A%0A%0A%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%3Cspan%3EBendta%20Schroeder%3C/span%3E%0A%20%20%20%20%20%20%20%20%3Cspan%3E%7C%3C/span%3E%0A%20%20%20%20%3Cspan%3EErika%20Reinfeld%3C/span%3E%0A%20%20%3Cspan%3E%7C%3C/span%3E%0A%20%20%3Cspan%3EKoch%20Institute%3C/span%3E%0A%20%20%0A%20%20%3C/div%3E%0A%0A%3Cdiv%3E%0A%20%20%20%20%20%20%0A%0A%20%20%20%20%20%20%3Cdiv%3E%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cspan%3EPublication%20Date%3C/span%3E%3Cspan%3E:%3C/span%3E%0A%20%20%20%20%20%20%20%20%0A%20%20%20%20%3C/div%3E%20%20%20%20%20%20%20%20%20%20%3Ctime%3EMarch%2030,%202021%3C/time%3E%0A%20%20%20%20%20%20%0A%20%20%3C/div%3E%0A%0A%3Cdiv%3E%0A%20%20%3Cdiv%3E%3Ca%20href=%22https://news.mit.edu/2021/big-data-dreams-tiny-technologies-0330%23press-inquiries%22%20target=%22_blank%22%3E%0A%3Cspan%3EPress%20Inquiries%3C/span%3E%3C/a%3E%3C/div%3E%0A%20%20%20%20%0A%3C/div%3E%0A%0A%0A%0A%3Cdiv%3E%0A%20%20%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%20%20%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cdiv%3E%3Cdiv%3E%3Cdiv%3E%0A%20%20%20%20%0A%20%20%20%20%20%20%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%20%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3Cdiv%20class=%22readableLargeImageContainer%22%3E%3Cimg%20src=%22https://news.mit.edu/sites/default/files/styles/news_article__image_gallery/public/images/202103/MIT-Koch-Institute-Reker-sorafenib.png?itok=lr0GmjDG%22%20alt=%22Photo%20illustration%20featuring%20computer-generated%20images%20of%20organic%20molecules%20morphing%20into%20an%20actual%20blobby%20electron%20microscope%20image%20of%20those%20same%20molecules%22%3E%3C/div%3E%0A%0A%0A%20%20%20%20%20%20%20%20%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%20%20%3C/div%3E%0A%0A%20%20%20%20%20%20%0A%20%20%20%20%20%20%20%20%20%20%20%20%3C/div%3E%3C/div%3E%3C/div%3E%3C/div%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%0A%20%20%20%20%3C/div%3E%0A%20%20%3C/div%3E%0A%3C/div%3E%0A%0A%0A%20%20%0A%20%20%20%20%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Cdiv%3E%0A%20%20%20%20%20%20%20%20%20%20%0A%0A%20%20%20%20%20%20%20%20%20%20%20%20%3Cp%3ESmall-molecule%20therapeutics%20treat%20a%20wide%20variety%20of%20diseases,%20but%20their%20effectiveness%20is%20often%20diminished%20because%20of%20their%20pharmacokinetics%20%E2%80%94%20what%20the%20body%20does%20to%20a%20drug.%20After%20administration,%20the%20body%20dictates%20how%20much%20of%20the%20drug%20is%20absorbed,%20which%20organs%20the%20drug%20enters,%20and%20how%20quickly%20the%20body%20metabolizes%20and%20excretes%20the%20drug%20again.%3C/p%3E%0A%0A%3Cp%3ENanoparticles,%20usually%20made%20out%20of%20lipids,%20polymers,%20or%20both,%20can%20improve%20the%20pharmacokinetics,%20but%20they%20can%20be%20complex%20to%20produce%20and%20often%20carry%20very%20little%20of%20the%20drug.%3C/p%3E%0A%0A%3Cp%3ESome%20combinations%20of%20small-molecule%20cancer%20drugs%20and%20two%20small-molecule%20dyes%20have%20been%20shown%20to%20self-assemble%20into%20nanoparticles%20with%20extremely%20high%20payloads%20of%20drugs,%20but%20it%20is%20difficult%20to%20predict%20which%20small-molecule%20partners%20will%20form%20nanoparticles%20among%20the%20millions%20of%20possible%20pairings.%3C/p%3E%0A%0A%3Cp%3EMIT%20researchers%20have%20developed%20a%20screening%20platform%20that%20combines%20machine%20learning%20with%20high-throughput%20experimentation%20to%20identify%20self-assembling%20nanoparticles%20quickly.%20In%20a%20%3Ca%20href=%22https://www.nature.com/articles/s41565-021-00870-y%22%20target=%22_blank%22%3Estudy%3C/a%3E%20published%20in%20%3Cem%3ENature%20Nanotechnology%3C/em%3E,%20researchers%20screened%202.1%20million%20pairings%20of%20small-molecule%20drugs%20and%20%E2%80%9Cinactive%E2%80%9D%20drug%20ingredients,%20identifying%20100%20new%20nanoparticles%20with%20potential%20applications%20that%20include%20the%20treatment%20of%20cancer,%20asthma,%20malaria,%20and%20viral%20and%20fungal%20infections.%3C/p%3E%0A%0A%3Cp%3E%E2%80%9CWe%20have%20previously%20described%20some%20of%20the%20%3Ca%20href=%22https://news.mit.edu/2019/inactive-ingredients-reactions-study-0313%22%20target=%22_blank%22%3Enegative%3C/a%3E%20and%20%3Ca%20href=%22https://news.mit.edu/2020/inactive-pill-ingredients-could-raise-dose-your-medication-0317%22%20target=%22_blank%22%3Epositive%3C/a%3E%20effects%20that%20inactive%20ingredients%20can%20have%20on%20drugs,%20and%20here,%20through%20a%20concerted%20collaboration%20across%20our%20laboratories%20and%20core%20facilities,%20describe%20an%20approach%20focusing%20on%20the%20potential%20positive%20effects%20these%20can%20have%20on%20nanoformulation,%E2%80%9D%20says%20Giovanni%20Traverso,%20the%20Karl%20Van%20Tassel%20(1925)%20Career%20Development%20Professor%20of%20Mechanical%20Engineering,%20and%20senior%20corresponding%20author%20of%20the%20study.%3C/p%3E%0A%0A%3Cp%3ETheir%20findings%20point%20to%20a%20strategy%20that%20solves%20for%20both%20the%20complexity%20of%20producing%20nanoparticles%20and%20the%20difficulty%20of%20loading%20large%20amounts%20of%20drugs%20onto%20them.%3C/p%3E%0A%0A%3Cp%3E%E2%80%9CSo%20many%20drugs%20out%20there%20don%E2%80%99t%20live%20up%20to%20their%20full%20potential%20because%20of%20insufficient%20targeting,%20low%20bioavailability,%20or%20rapid%20drug%20metabolism,%E2%80%9D%20says%20Daniel%20Reker,%20lead%20author%20of%20the%20study%20and%20a%20former%20postdoc%20in%20the%20laboratory%20of%20Robert%20Langer.%20%E2%80%9CBy%20working%20at%20the%20interface%20of%20data%20science,%20machine%20learning,%20and%20drug%20delivery,%20our%20hope%20is%20to%20rapidly%20expand%20our%20tool%20set%20for%20making%20sure%20a%20drug%20gets%20to%20the%20place%20it%20needs%20to%20be%20and%20can%20actually%20treat%20and%20help%20a%20human%20being.%E2%80%9D%3C/p%3E%0A%0A%3Cp%3ELanger,%20the%20David%20H.%20Koch%20Institute%20Professor%20at%20MIT%20and%20a%20member%20of%20the%20Koch%20Institute%20for%20Integrative%20Cancer%20Research,%20is%20also%20a%20senior%20author%20of%20the%20paper.%3C/p%3E%0A%0A%3Cp%3EA%20cancer%20therapy%20meets%20its%20match%3C/p%3E%0A%0A%3Cp%3EIn%20order%20to%20develop%20a%20machine%20learning%20algorithm%20capable%20of%20identifying%20self-assembling%20nanoparticles,%20researchers%20first%20needed%20to%20build%20a%20dataset%20on%20which%20the%20algorithm%20could%20train.%20They%20selected%2016%20self-aggregating%20small-molecule%20drugs%20with%20a%20variety%20of%20chemical%20structures%20and%20therapeutic%20applications%20and%20a%20diverse%20set%20of%2090%20widely%20available%20compounds,%20including%20ingredients%20that%20are%20already%20added%20to%20drugs%20to%20make%20them%20taste%20better,%20last%20longer,%20or%20make%20them%20more%20stable.%20Because%20both%20the%20drugs%20and%20the%20inactive%20ingredients%20are%20already%20FDA-approved,%20the%20resulting%20nanoparticles%20are%20likely%20to%20be%20safer%20and%20move%20through%20the%20FDA%20approval%20process%20more%20quickly.%3C/p%3E%0A%0A%3Cp%3EThe%20team%20then%20tested%20every%20combination%20of%20small-molecule%20drug%20and%20inactive%20ingredient,%20enabled%20by%20the%20Swanson%20Biotechnology%20Center,%20a%20suite%20of%20core%20facilities%20providing%20advanced%20technical%20services%20within%20the%20Koch%20Institute.%20After%20mixing%20pairings%20and%20loading%20384%20samples%20at%20a%20time%20onto%20nanowell%20plates%20using%20robotics%20in%20the%20High%20Throughput%20Sciences%20core,%20researchers%20walked%20the%20plates,%20often%20with%20quickly%20degrading%20samples,%20next%20door%20to%20the%20Peterson%20(1957)%20Nanotechnology%20Materials%20Core%20Facility%20core%20to%20measure%20the%20size%20of%20particles%20with%20high%20throughput%20dynamic%20light%20scattering.%3C/p%3E%0A%0A%3Cp%3ENow%20trained%20on%201,440%20data%20points%20(with%2094%20nanoparticles%20already%20identified),%20the%20machine%20learning%20platform%20could%20be%20turned%20on%20a%20much%20bigger%20library%20of%20compounds.%20Screening%20788%20small-molecule%20drugs%20against%20more%20than%202,600%20inactive%20drug%20ingredients,%20the%20platform%20identified%2038,464%20potential%20self-assembling%20nanoparticles%20from%202.1%20million%20possible%20combinations.%3C/p%3E%0A%0A%3Cp%3EThe%20researchers%20selected%20six%20nanoparticles%20for%20further%20validation,%20including%20one%20composed%20of%20sorafenib,%20a%20treatment%20commonly%20used%20for%20advanced%20liver%20and%20other%20cancers,%20and%20glycyrrhizin,%20a%20compound%20frequently%20used%20as%20both%20a%20food%20and%20drug%20additive%20and%20most%20commonly%20known%20as%20licorice%20flavoring.%20Although%20sorafenib%20is%20the%20standard%20of%20care%20for%20advanced%20liver%20cancer,%20its%20effectiveness%20is%20limited.%3C/p%3E%0A%0A%3Cp%3EIn%20human%20liver%20cancer%20cell%20cultures,%20the%20sorafenib-glycyrrhizin%20nanoparticles%20worked%20twice%20as%20well%20as%20sorafenib%20by%20itself%20because%20more%20of%20the%20drug%20could%20enter%20the%20cells.%20Working%20with%20the%20Preclinical%20Modeling,%20Imaging%20and%20Testing%20facility%20at%20the%20Koch%20Institute,%20researchers%20treated%20mouse%20models%20of%20liver%20cancer%20to%20compare%20the%20effects%20of%20sorafenib-glycyrrhizin%20nanoparticles%20versus%20either%20compound%20by%20itself.%20They%20found%20that%20the%20nanoparticle%20significantly%20reduced%20levels%20of%20a%20marker%20associated%20with%20liver%20cancer%20progression%20compared%20to%20mice%20given%20sorafenib%20alone,%20and%20lived%20longer%20than%20mice%20given%20sorafenib%20or%20glycyrrhizin%20alone.%20The%20sorafenib-glycyrrhizin%20nanoparticle%20also%20showed%20improved%20targeting%20to%20the%20liver%20when%20compared%20to%20oral%20delivery%20of%20sorafenib,%20the%20current%20standard%20in%20the%20clinic,%20or%20when%20injecting%20sorafenib%20after%20it%20has%20been%20combined%20with%20cremophor,%20a%20commonly-used%20drug%20vehicle%20that%20improves%20water%20solubility%20but%20has%20toxic%20side%20effects.%3C/p%3E%0A%0A%3Cp%3EPersonalized%20drug%20delivery%3C/p%3E%0A%0A%3Cp%3EThe%20new%20platform%20may%20have%20useful%20applications%20beyond%20optimizing%20the%20efficiency%20of%20active%20drugs:%20it%20could%20be%20used%20to%20customize%20inactive%20compounds%20to%20suit%20the%20needs%20of%20individual%20patients.%20In%26nbsp%3Bearlier%20work,%20members%20of%20the%20team%20found%20that%20inactive%20ingredients%20could%20provoke%20adverse%20allergic%20reactions%20in%20some%20patients.%20Now,%20with%20the%20expanded%20machine%20learning%20toolbox,%20more%20options%20could%20be%20generated%20to%20provide%20alternatives%20for%20these%20patients.%3C/p%3E%0A%0A%3Cp%3E%E2%80%9CWe%20have%20an%20opportunity%20to%20think%20about%20matching%20the%20delivery%20system%20to%20the%20patient,%E2%80%9D%20explains%20Reker,%20now%20an%20assistant%20professor%20of%20biomedical%20engineering%20at%20Duke%20University.%20%E2%80%9CWe%20can%20account%20for%20things%20like%20drug%20absorption,%20genetics,%20even%20allergies%20to%20reduce%20side%20effects%20upon%20delivery.%20Whatever%20the%20mutation%20or%20medical%20condition,%20the%20right%20drug%20is%20only%20the%20right%20drug%20if%20it%20actually%20works%20for%20the%20patient.%E2%80%9D%3C/p%3E%0A%0A%3Cp%3EThe%20tools%20for%20safe,%20efficacious%20drug%20delivery%20exist,%20but%20putting%20all%20the%20ingredients%20together%20can%20be%20a%20slow%20process.%20The%20combination%20of%20machine%20learning,%20rapid%20screening,%20and%20the%20ability%20to%20predict%20interactions%20among%20different%20combinations%20of%20materials%20will%20accelerate%20the%20design%20of%20drugs%20and%20the%20nanoparticles%20used%20to%20deliver%20them%20throughout%20the%20body.%3C/p%3E%0A%0A%3Cp%3EIn%20ongoing%20work,%20the%20team%20is%20looking%20not%20just%20to%20improve%20effective%20delivery%20of%20drugs%20but%20also%20for%20opportunities%20to%20create%20medications%20for%20people%20for%20whom%20standard%20formulations%20are%20not%20a%20good%20option,%20using%20big%20data%20to%20solve%20problems%20in%20small%20populations%20by%20looking%20at%20genetic%20history,%20allergies,%20and%20food%20reactions.%3C/p%3E%20%20%20%20%20%20%20%20%0A%0A%20%20%20%20%20%20%3C/div%3E%0A%20%20%20%20%20%20%20%20%3C/div%3E%0A%20%20%3C/div%3E%3C/div%3E%3C/div%3E%3C/div%3E%3C/div%3E%3C/div%3E%3Cdiv%20id=%22background%22%3E%3Cdiv%20id=%22background_shading%22%3E%3C/div%3E%3C/div%3E%3C/div%3E%3Clink%20rel=%22stylesheet%22%20href=%22https://markups.kdanmobile.com/mymarkup/front/the_components/reformat/style.css%22%20type=%22text/css%22%3E%3C/body%3E

Summary | 9 Annotations
Small-molecule therapeutics treat a wide variety of diseases, but their effectiveness is often diminished because of their pharmacokinetics — what the body does to a drug. After administration, the body dictates how much of the drug is absorbed, which organs the drug enters, and how quickly the body metabolizes and excretes the drug again.
2021/03/31 13:21
In a study published in Nature Nanotechnology, researchers screened 2.1 million pairings of small-molecule drugs and “inactive” drug ingredients, identifying 100 new nanoparticles with potential applications that include the treatment of cancer, asthma, malaria, and viral and fungal infections.
2021/03/31 13:21
“We have previously described some of the negative and positive effects that inactive ingredients can have on drugs, and here, through a concerted collaboration across our laboratories and core facilities, describe an approach focusing on the potential positive effects these can have on nanoformulation,” says Giovanni Traverso, the Karl Van Tassel (1925) Career Development Professor of Mechanical Engineering, and senior corresponding author of the study.
2021/03/31 13:21
“So many drugs out there don’t live up to their full potential because of insufficient targeting, low bioavailability, or rapid drug metabolism,” says Daniel Reker, lead author of the study and a former postdoc in the laboratory of Robert Langer. “By working at the interface of data science, machine learning, and drug delivery, our hope is to rapidly expand our tool set for making sure a drug gets to the place it needs to be and can actually treat and help a human being.”
2021/03/31 13:22
They selected 16 self-aggregating small-molecule drugs with a variety of chemical structures and therapeutic applications and a diverse set of 90 widely available compounds, including ingredients that are already added to drugs to make them taste better, last longer, or make them more stable. Because both the drugs and the inactive ingredients are already FDA-approved, the resulting nanoparticles are likely to be safer and move through the FDA approval process more quickly.
2021/03/31 13:22
The researchers selected six nanoparticles for further validation, including one composed of sorafenib, a treatment commonly used for advanced liver and other cancers, and glycyrrhizin, a compound frequently used as both a food and drug additive and most commonly known as licorice flavoring. Although sorafenib is the standard of care for advanced liver cancer, its effectiveness is limited.
2021/03/31 13:22
They found that the nanoparticle significantly reduced levels of a marker associated with liver cancer progression compared to mice given sorafenib alone, and lived longer than mice given sorafenib or glycyrrhizin alone.
2021/03/31 13:22
“We have an opportunity to think about matching the delivery system to the patient,” explains Reker, now an assistant professor of biomedical engineering at Duke University. “We can account for things like drug absorption, genetics, even allergies to reduce side effects upon delivery. Whatever the mutation or medical condition, the right drug is only the right drug if it actually works for the patient.”
2021/03/31 13:22
In ongoing work, the team is looking not just to improve effective delivery of drugs but also for opportunities to create medications for people for whom standard formulations are not a good option, using big data to solve problems in small populations by looking at genetic history, allergies, and food reactions.
2021/03/31 13:22